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By Jack D. Stephenson
SUMMARY

This report describes a technique which combines theory and
experiments for determining relaxation times in gases. The technique is
based on the measurement of shapes of the bow shock waves of low—fineness—
ratio cones fired from high-velocity guns. The theory presented in the
report provides a means by which shadowgraph data showing the bow waves
can be analyzed so as to furnish effective relaxation times.

Relaxation times in air were obtained by this technique and the
results have been compared with values estimated from shock tube measure—
ments in pure oxygen and nitrogen. The tests were made at velocities
ranging from 4600 to 12,000 feet per second, corresponding to equilibrium
temperatures from 3590° R (1990° K) to 6200(5 R (3440° K), under which
conditions, at all but the highest temperatures, the effective relaxation
times were determined primarily by the relaxation time for oxygen and
nitrogen vibrations.

INTRODUCTION

The effects of molecular vibration and dissociation upon the
thermodynamic properties of air (and its constituent gases) at elevated
temperatures have been extensively studied, and accurate tabulations of
the properties of air have been wade at temperatures up to 15,000o K,
assuming that the air is in chemical and thermodynamic equilibrium
(see refs. 1, 2, and 3). However, when the gas density is low and local
velocities are high, or when temperatures vary rapidly along streamlines,
the assumption of equilibrium can not necessarily be made, and the rate
of adjustment of the gas properties must be taken into account.

It is known that when air is heated suddenly in strong shock waves,
the translational and rotational degrees of freedom of the molecules
adjust to the new state with essentially no time lag, and that the
molecular vibration and dissociation adjust considerably more slowly
(ref. L). When the latter type of adjustments require a time that is of



the same order as the time required for the gas particles to traverse a
flow field being studied, it may be important o know accurately the
magnitude of this time, since the flow can be significantly influenced
by it.

Theories for calculating the variations ia gas properties in
nonequilibrium flow through normal shock waves have been investigated by
various authors: the relaxation of molecular vibrations in oxygen and
nitrogen in reference 5; and oxygen dissociation relaxation 1n references
6, 7, and 8. Reference 5 indicates that the mechanism of the relaxation
process for vibrational excitation in a pure gas can be described theo-
retically. Even for this comparatively uncomplicated process, however,
the existing theory does not provide complete information for calculating
numerical values of relaxation time, and experimental results are needed
to evaluate collision cross-section constants appearing in the theory.

At higher enthalpy, when the relaxation involves chemical reactions, and
when the gas is a mixture, as in the case of &ir, the theory is consider-
ably more complex, and is not generally sufficiently precise for use in
solving flow problems, where accuracy ig essertial. Consequently, it is
desirable to have available experimental results indicating relaxation
times for a wide range of enthalpies and gas ¢ensities, for use both in
solving engineering problems in gas flow and in evaluating the theory.

The technique that has been employed in cbtaining practically all
existing relaxation time data at high enthalp; has been to measure in
shock tubes the variations with distance or time of the local gas prop-
erties in the region just behind the advancin;; shock wave (see refs. 5,
9, and 10).

This report describes another technique :‘or obtaining relaxation
times from experiments which, for certain tes. conditions, may be more
convenient than the shock tube tests. The technique consists in firing
from high velocity guns cone-shaped models of low-Tineness-ratio and
recording the shape of the bow shock wave. B 'fective relaxation times
are then calculated from the wave shape data ‘ising & theory developed by
D. R. Chapman that is presented in this repor:.

Tests were conducted to obtain relaxation times in air. At the
model velocities of the tests, the enthalpy b:hind the bow shock waves
was sueh that the nonequilibrium effects were due primarily to the
excitation of oxygen and nitrogen vibrations. Relaxation times for
vibrations are available from shock-tube tests for these two gases
(ref. 5). In the present report, the results from the shock-tube tests
in pure oxygen and pure nitrogen were used to estimate effective relaxa-
tion times in air, and these times were compared with those determined
from the tests described herein.

A limited amount of data was obtained ir which small effects of
oxygen dissociation could be observed on the bow wave shape. However,
such data were not sufficiently precise to permit the calculation of
relaxation times for the dissociation.
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NOTATION

pressure coefficient
enthalpy
Mach number
pressure
radial cocordinate parameter, L

(o]
radial coordinate
slant length of cone
Reynolds number, also gas constant for unit mass
model radius
temperature ratio across shock wave, %2, also time

1

absolute temperature
mean temperature, between frozen and equilibrium values
free-stream velocity
resultant velocity in region between solid cone and shock wave
average velocity behind shock wave
velocity components behind shock wave
maximum possible velocity, expansion flow

resultant velocity just behind the shock wave

distance between actual shock wave and reference shock wave
(see rig. 2(b))

distance from solid cone surface (see sketch (a))

distance between shock waves for frozen and equilibrium flow at
the distance 1y along model cone (see fig. 2(b))

compressibility factor



streamline angle behind shock wave

h./h
enthalpy ratio divided by temperature ratioc, Egéfi

2/ -1
ratio of specific heats for ideal ges
effective ratio of specific heats (cee eq. (A21))
yaw angle of solid cone
yaw angle of bow shock wave
boundary-layer displacement thickness
angular coordinate of bow shock wave
bow shock wave angle for equilibriun flow
bow shock wave aﬁgle for frozen flor

golid or model cone half angle

difference between shock wave angle and solid cone angle, 0 - 6g

density

increase in apparent shock wave ang.e due to projection, Qp -

relaxation time

Subscripts

equilibrium

effective

frozen flow

oxygen in equilibrium, nitrogen frozen
normal shock wave

nitrogen

oxygen

-~
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P uncorrected for projection effects

s model cone surface

S constant entropy

t parallel to shock wave

W bow shock wave

o standard air conditions (1 atm., 59° F), also reference conical
flow

1 free stream

2 behind the bow shock wave

METHOD OF EXPERIMENT AND ANALYSIS

The excitation of the internal degrees of freedom in a gas with high
total enthalpy is evident as an increase in the specific heat and, when
dissociation occurs, also as an increase in the compressibility. The
effect of the increased specific heat is to decrease the temperature in
the flow behind a shock wave compared with that of an inert gas at the
same enthalpy. The density then increases approximately inversely with
the temperature, while the pressure in most cases of flow through shock
waves 1s relatively unaffected by the excitation of molecular vibraticns
and by dissociation. This increased density is opposed to a small extent
by the effect of the increased compressibility accompanying dissociation.

In the case of a two-dimensional oblique shock flow, in order to
satisfy continuity requirements, the increased density of real air behind
the shock wave results in a reduced total stream tube cross section
between the shock wave and the solid surface, so that for the same flow
turning angle, the shcck wave must assume a more acute angle with the
flow direction. The same is true for a cone. The geometry of the bow
wave on a cone can thus be used as a measure of the state ¢f the air
behind the shock wave.

A cone of large included angle is a particularly advantagecus model
for studying variations in gas properties, because the flow on a cone
with an attached shock wave is subject to considerably simpler and more
exact analysis than that on most other shapes adaptable to ballistic
types of tests, such as blunt bodies with detached shock waves.

A theory which relates the shock wave shape to the thermodynamic
properties of the gas is given for cones of large included angle in the
following section. It shows that in the case of such cones (selected so



graphical form, as illustrated, for any assumel conditilons which define
the states of the gas on each side of the shoc<¢ wave, TR is calculated
from equation (A21), and values of M, , 8y - Jg, and Cp are read from

the graphs. Then, from equation (A26) the free-stream Mach number of the
actual flow is obtained, and all of the required quantities have been
evaluated for the equilibrium flow.

Appendix B illustrates the calculation of the bow shock wave angle
and pressure ratio for a 52.50 solid cone at & free-stream temperature of
540° R at one Mach number and pressure. Results of this and similar
calculations for other Mach numbers and pressures are plotted in figure 8
which shows A9, the difference between the bcw shock wave semicone angle
and the solid body semicone angle, as a function of Mach number. When
oxygen dissociation occurs, the equilibrium bcw wave angle is a function
of the pressure, as indicated by the lower curves. The latter curves are
for constant pressure behind the shock wave.

Nonequilibrium flow.- In this section an expression is derived from
which the coordinates of the bow shock wave or a cone can be calculated
for nonequilibrium flow. This flow has the characteristic that the time
required for the gas to attain a density near equilibrium, after passing
through the shock wave, is of the same order es that required for the gas
particles to move a distance typical of the dimensions of the flow field
being studied.

In the following development, which first considers an infinite cone,
three assumptions are made: (a) the flow prorerties (p, u, h) between the
bow wave and cone surface differ by
only a small amount from correspond-
ing prorerties in some reference
conical flow (pg, Uy, hg)s (b) this
reference conical flow (which could
be, e.g., either the frozen conical

Stroight bow wave of
reference conical flow /

Curved bow wave

correspcnds to a cone angle Og

sufficiently blunt that all proper-
ties p., Uy, h, are essentially

Py,

constant between the bow wave and

Oy - 65 1is small compared to &g

to the stream tube in sketch (a),
from the equality cof the fgee—stream
mass flow in, 2mnp u,ry sin"6 dry,
Sketch (a) and the flow out, 2wpur sin 6 4y,

and noting that pu may be expressed as a fuunction of r,

flow or the equilibrium conical flow)

cone surface; and (c) the free-stream
Mach nurber is sufficiently high that

(so that sin 8 2 sin 0y). Referring

~ NN
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Y r
. - .2, Pauy
J[ r sin 6 dy =\/P sin<g,, S5 Ty (1)

o}

By applying this equation first to the nonequilibrium flow, then to the
reference conical flow, and subtracting (noting from assumption (c) that
sin & = sin 9, ¥ sin wa) we have

Pols r — - r Poly ~ PU
ppuy sin 6y Iw = Y, ) = . ou Tydry (2)

For a particle flowing along a streamline the flow properties are regarded
as a function of the enthalpy. From assumption (a) of small departures
from a reference conical flow,

oU = poug + P%%‘QJ (h - hy) (3)
@]

equation (2) becomes, upon disregarding second-order terms in the inte-
grand,

- r
Foo oh | N <? -y ) =\jf EF:-EQ r.dr (M)
Pl B(pu)J031n O, \°¥ Yo o Polo WOV

The definition of relaxation time T 1s taken as

he - h
H==== (5)

Since dh/dt = u dh/dr ealong a streamline, this equation for constant -
and constant u = u, (assumptions (b) and (a)) may be integrated between

O
ro=r, and r = r to obtain
he - h = (he - hw)e_(r - Tw) /o (6)

This equation shows that at r = @, h = hy, as should be the case, and
at r =ry, h =h, (by definition of h,). By noting that
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h - hy =he - by - (he - 1)

r - ry
= he - by - (he - hye TUo (7)
I+ rollows from equation (4) that, with x = ¥ and P = =,
Uy T,
= _ = P _p
Yw = v, he ~ hy *
6 - 6 = v o - i%‘jf 1 - he ——EH e x dx (8)
T P= s e " o

Applying this now to the case of a nonequilibrium flow near a reference
frozen flow, hy = by, and h,, will everywhere be nearly he so that

equation (8) integrates to

6 - 6, = CF(P) (9)

1 (he - he) pqu; gin G¢

where C 1is a constant equal to =
2 2 dh
CONE=]
f

3(pu)

and

F(P) =1 - 5 (P +P- 1) (10)

Tn the limit of frozen flow T - ®, P - 0, a1d F(P) - (1/3)P, which gives
in the limit, F(0) = O, thus satisfying equaion (9). We have

6 - 9r _ CF(P) (11)
6e - Or 6 - Op
so that in the opposite 1limit of equilibriur £low, T = o, P= ;%— - o0,
0

and 9 must approach Oe- We use this requirement to evaluate C Zfrom
+he above equation (noting that F(w) = 1).

1 = (12)

NI =
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consequently,
6 - 6
L-F(F) =1-2 (e +P-1) (13)
Oe = O¢ P
or
6 -6
- Qe = -% (e_P + P -1) (ll*)
£~ Ye P

This furnishes an expression from which the coordinates of the bow shock
wave con an infinite cone can be calculated when the gas behind the shock
wave 1s not in equilibrium.

8., - 6 o —r/Tu
L F 2<e O+—ﬂ—§g—> (15)

O - Oe (r/7ug)

In this equation 6, 1is the angular coordinate and r is the radial
distance to points on the shock wave. Also, u, 1is the average velocity
in the flow behind the shock wave, and + is the relaxation time. In
the derivation presented, v 1s the time required for the enthalpy of the
gas to reach a specified fraction of its total variation from frozen to
equilibrium. If 1 1is assumed to be a constant during the relaxation,
this fraction corresponds to the state when the value of the state param-
eter deviates by 1l/e +times the initial deviation from the equilibrium
value.

It is convenient to alter the form of equation (15) slightly in
applying it to the case of finite cones. In this altered form, the
distance ratio y/yb is calculated as

Y _ (%= O\ r
I 9f~9

As indicated in figure 2(b), y 1s the distance measured from the equili-
brium shock wave to the curved shock wave at radial distance r, and v

is the distance between the frozen and equilibrium shock wavesg at radial
distance Ty . This distance ratio y/yb has been calculated and is shown
graphically in figure 9 as a function of the radial coordinate r/rb for
values of the reciprocal relaxation distance ratio rb/Tuo from zero to
infinity. At the extreme values of this ratio, zero and infinity, the
solutions coincide, respectively, with the solutions for frozen and
equilibrium flow behind the shock wave.
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Experiments

The theory presented in the preceding secwions shows that, from
information on the included angle of the bow shock wave of low-fineness-
ratio cones, the state of the gas behind the shock wave can be deduced,
and in cases where the relaxation adjustuents In the gas occur in a
portion of the flow which is comparable in size with the region of flow
on the conical portion of the model, the relaxation time in the gas can
be estimated from the contour of the (curved) shock wave. IExperiments
were undertaken in which the state parameters of the gas would vary
appreciably between the equilibrium and frozen states, and test conditions
were selected for which it was expected that nonequilibrium flow would
occur. The experiments consisted of launching conical models (of 52.50
and 550 half angle) in free flight at high velocity in the Supersonic
Free-Flight Wind Tunnel. The following information was required from the
experiments: (1) well-defined pictures of the bow wave from which the
wave shape or wave angle could be measured and (2) measurements of the
rree—stream air properties and the total velocity with which the measured
wave geometry could be correlated. ”

10N

Apparatus and models.—- The pictures of the bow waves were provided
by spark shadowgraphs which are obtained at each of nine instrumented v
stations in the wind tunnel test section (see ref. 15). TFor the tests
reported, three smooth-bore guns were uged to launch the models: a
1—3/M—inch—bore powder gun, a 37-mm light-gas gun, and a caliber 50 light-
gas gun. The latter two used helium (compressed in a shock-tube reservoir)
as the propellant, as described in reference 15.

The models, examples of which are shown :n figure 10, were short
blunt cone—-cylinders, the forward portions of which were machined from
aluminum alloy and were bonded to the cylindr:cal nylon rear portion with
an epoxy resin. (It appeared that screw fastenings between the parts
would often promote model breakage in the gun. as a result of stress
concentrations.) The flared afterportions of two of the models in
figure 10 (which were for use in the light-gas guns) sheared off before
the models left the launch tubes.

The models were accurately measured and inspected with a contour
proJjector (at 20% magnification), and only thyse models were used which
had exact straight-sided cones without bluntnzss or concavity. Slight
variations of the included cone angle from th> nominal angle were noted,
amounting to a maximum of 0.20, but because of the way in which the data
were analyzed, these variations had no effect on the results of the tests.

Tests.- The majority of the data presentad in this report has been
obtained by firing the models into still air at pressures ranging from
1 atmosphere to 0.057 atmosphere, and at velocities between 7,200 and
12,000 feet per second. In these tests the static temperature of the air
was about 5300 R.



~ 1V O

13

Tests were also conducted by firing into a supersonic air stream of
Mach number 3 in the Supersonic Free-Flight Wind Tunnel, which is
described in reference 15. In these tests, for which the air stream
static pressure wasg approximately 0.10 atmosphere and the static tempera~
ture was approximately 190° R, data were obtained at Mach numbers Trom
.79 to 13.55, corresponding to equilibrium temperatures behind the bow
shock wave ranging from 1510° R to LL60° R.

A relatively large number of rounds were fired in the test program
but the amount of data obtained was not large, primarily because of two
problems: breakage of the model in the launch tube, and oscillations of
the model attitude in flight. The oscillations were particularly trouble-
some when the models were fired into a partial vacuum. In this case the
gun muzzle blast often produced a large disturbance to the model attitude,
and periods of oscillation were so long that at the instants when the
shadowgraphs were recorded, the probability that the model would be at =a
small angle of attack was low.

Reauction of data.- The data obtained in the tests consisted of the
time-distance histories of the model flights, together with spark shadow-
graphs at the nine instrumented stations. With (the Mach number 3) air
flow in the test section, the free-stream conditions were determined from
measured temperatures and pressures in the settling chamber in conjunction
with the wind-tunnel calibration.

At each station the angles of yaw and pitch of the models were
measured from the shadowgraphs and plotted to reproduce the pitch and yaw
histories of the flights. These plots were inspected in order to select
the shadowgraphs in which the model was at a sufficiently low angle so
that the measured bow wave shapes would be very nearly the same as those
for the model at exactly zero angle of attack. As a guide to the maximum
permissivle angles of attack, the effect of yaw on a conical bow wave was
considered. According to references 16 and 17, the bow wave of an infinite
cone in flow with constant ¥ (y = 1.405) remains a circuler cone with
wave angles unchanged even at relatively large angles of yaw., Only a
second-order solution indicates a small eccentricity to the circular cone
wave shape. Reference 16 also shows that when the solid cone is yawed,
the axis of the bow wave cone isg generally no longer ccincident with the
solid cone axis. This is illustrated in figure 11 where the ratios of
the yaw angles of these axes are plotted as functions of the solid cone
semivertex angle 6g.

When yawing of the model is moderate and occurs only in the plane
parallel to one shadowgraph film plate, the included angle of the bow
wave in the shadowgraph is (according to the solution in which ¥ is
constant) the same as that for zero yaw angle.

In addition to the possibility of an aerodynamic effect of yaw, an
optical effect is present such that in = plane normal to the plane of
yawing, a shadowgraph plate will record the projection on that plane of
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the bow wave which has an apparent angle Gp larger than Oy according
to the relation

cos S'Jcot28w ~ tan“®

tan GP =

5in®s - cosZS cot26w

where © is the yaw angle of the bow wave. The difference between the
actual shock-wave cone angle, Oy and the projected angle, Qp, o = GP - Oy

is plotted in figure 12. By the use of figure 11, extrapolated to include
model cone angles of 52.5° and 550 and figure 12, it was generally possible
to select shadowgraphs from most of the test flights in which the effect

of this type of distortion would be less than 0.10°. A correction to the
data was applied when the effect of this distortion was gignificant.

Spark shadowgraphs which showed well-de:'ined bow waves and met the
requirements that the model yaw was small were selected and accurately
measured. Typical shadowgraphs are shown in figure 13. The coordinates
of a series of points along the front of the bow wave image were read
parallel and perpendicular to the bisector o the bow wave. A film-reading
machine fitted with a microscope was used to measure the coordinates,
which could be read to an accuracy of 0.001 inch in the streamwise direc-
tion and to 0.005 inch laterally. Figure 14(a) shows an example of the
how wave contour that was read from a shadowzraph in this manner and
plotted.

The bow shock waves in the shadowgraphs were not always symmetrical
about & bisecting axis, but instead had different curvatures on the two
branches. Sometimes the reasons for this asymmetry were not evident, but
in other cases it could be attributed qualitatively to the effect of a
small yaw angle, which would, in nonequilibrium flow, produce different
rates of excitation of the vibrations and dissociation on the two flow
regions, the higher temperatures and pressures on the windward side causing
a decrease in the relaxation time. Because the theory that has been devel-
oped required the assumption that the wave cngles are symmetrical, when
the bow wave was not symmetrical the curve 1as oriented symmetrically
about the outer portions of the curve (just inside the estimated position
where the model shoulder would influence the flow).

To calculate the relaxation time from “he bow-wave data, the
procedure described pelow was employed. Th.s calculation is slightly
indirect, but it tends to smooth errors in —he location of individual
points on the bow wave. Coordinates of the points read from the original
shadowgraphs were transferred by simple rotation of the axes, so that the
outer portion of the bow wave would be symm=trical about the horizontal
axis. Polar coordinates of each point were calculated based on a location
of the origin at the apex of the bow wave cone. An exact determination
of the location of this apex sometimes provad to be the principal factor
in limiting the accuracy of the final results. Although the models were

B oI O =g
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all examined carefully before firing to see that they were truly conical
and not blunted or excessively pointed, some of the shadowgraphs evidenced
local distortion, refraction effects, fuzziness or other causes of indis-
tinct definition near the apex which would introduce errors. When it
appeared that such an error might be large, the shadowgraph involved was
not used.

The polar coordinates of the points on the bow wave then were plotted
as 06y as a function of radial distance, r/rb. This type of plot, shown

in figure 14(b), was generally erratic near the origin, at r/rb less
than about 0.3, but became relatively smooth and consistent as the radial
coordinates increased tc unity. A curve was faired through the portion
of the plotted points that defined a consistent relation, treating the
upper and lower branches of the bow wave separately. From these two
curves, a single mean curve was drawn to represent the best symmetrical
average bow wave contour. At two or three values of r/rb between 0.6

and 1.0, the polar angle 0, was read from this single curve and y/yb
was computed from the relation

J bw -~ e

Yo 9 - fe Tp

This value of y/yb, together with the corresponding cocrdinate r/rb,

locates a point in the graph, figure 9, which determines a value of the
parameter rb/ruo. The relaxation time then is

I‘b;Tuo U.o

In this relation wug 1s the average particle velocity along a streamline,
starting at the shock wave and extending downstream to a point where the
gas is close to eguilibrium or is leaving the region being considered.

The calculation of an accurate value of wu, 1is complicated by the

necessity of knowing the details of local variations of the state of the
air which in turn are functions of relaxation time. Preliminary calcula-
tions indicated that the value of u, obtained assuming that the air

reached equilibrium with no time lag would not be greatly different from
the value obtained assuming frozen flow with a bow wave angle egual to
that for the equilibrium flow. Thus the calculation for the case of
frozen flow would correspond to a solution for a more slender solid cone
than that of the actual model, but for the same free-stream Mach number.

It was estimated that the wvalue of Uy determined in this manner would

be accurate within 5 percent. ZFrom this it appeared that the degree of

approximation inveolved in using this value of U, would be well within

the accuracy of the measurements for determining values of T; therefore,
this value of U, Wwas used in reducing all of the data.



Boundary-layer effects.- The possible effects on the bow shock wave
shape of the boundary layer on the conical model surface were investigated.
In appendix C results of calculations are presented and discussed which
show the maximum magnitude of the boundary-layer displacement thickness
and the estimated effect on the bow wave angle in conical flow. On the
pasis of these estimates, it was concluded that the boundary layer had
only a very small effect on the bow wave share in practically all of the
tests from which data were derived, and so nc correction for this effect
was made.

RESULTS AND DISCUSSICN

Figures 15(a) through 15(d) show the exyerimental data that were
used in the calculation of the relaxation times. In these figures, as
in figure 8, the ordinate A9 1s the difference between the angular
(polar) coordinate of points on the shock wave and the half angle of the
solid cone. FRach pair of symbols joined by a solid line corresponds to
a ceparate shadowgraph. When the two symbols are not coincident, the
sow wave had curvature and the wave angle was measured on the shock wave
at locations ranging from a point near the apex to a point near the
maximum model radius. A total of 20 model stots is represented by the
data shown in figure 15.

Tn addition to the experimental data, f:gure 15 shows (as in fig. 8)
the curves calculated from the theory for frozen flow, flow with the
oxygen vibrations fully excited, flow with dissociation frozen, oxygen
and nitrogen vibrations fully excited, and f-.ow with vibrations and
dissociation in equilibrium.

Figure 15 shows that most of the data l.es in the region between the
curves Tor frozen and for fully excited egquilibrium flow. From this it
is inferred that a major portion of the data contains regions of non-
equilibrium flow. Since the data shown were obtained at various free-
stream pressures, and since the relaxation time 1s a function of the
local pressure (and the local pressure is a Tunction of the stream pres—
sure), it would not be expected that the data would lie on a continuous
curve, unless the flow were either frozen or in equilibrium (without
dissociation). The bow wave shapes predictel from the theory and shown
in figure 9 indicate that all of the bow wav:s for nonequilibrium flow
become coincident with the wave for frozen f ow as the apex is approached.
Such coincidence of the meximum values of th: wave angles with the values
corresponding to frozen flow is not generalls evident in the experimental
data, primarily because accurate measurement of the wave angles could not
be made from the shadowgraphs in the region 1ear the apex (see fig. 14(p)).

In most of the tests, the effect of dissocilation was slight, and even
at the highest temperatures (i.e., at the hizhest velocities), dissociation
would produce less than a third of the possible variation of Gw between

~N N
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frozen and equilibrium at the available range of pressures of the tests:

60 to 5.7 atmospheres behind the shock wave. It became evident that this
limited amount of data applicable to oxygen dissociation would be inade-

quate for the determination of the relaxation time for this process.

Experimental Relaxation Time

Reference 5 presents a discussion of the caleculation of vibrational
relaxation time from the theory of Landau and Teller (ref. 18) based on
general guantum considerations. It is shown that Tp, the product of the
relaxation time and the pressure of the relaxing gas, 1s a function of
the temperature and of certain characteristics of the gases, including
the collision cross sections and the characteristic temperature for
vibration. For any one gas then, the theory shows that the relaxation
time can be presented as a single curve, Tp as a function of temperature.
When the results of the tests are presented and compared with shock-tube
results in this report, the product Tp 1is therefore used as the relax—
ation time parameter. In figure 16 it is plotted as a function of the
average temperature defined as follows,

—'_Te+Tf

==

where Te 1s the calculated equilibrium temperature behind the shock
wave and Tp 1is the temperature calculated assuming frozen flow in which

the shock wave angle is the same as the angle in the shadowgraph from
which the relaxation time is determined. The relaxation time parameters
were obtained from the shadowgraph data as described in the section on
reduction of the data. The circular symbols denote the tests in which

the models were fired into still air and the triangular symbols denote
tests with the models fired into the supersonic air stream of Mach

number 3. Symbols joined by vertical lines are from single shadowgraphs
which yielded different relaxation times depending upon the radiasl position
along the bow wave that was selected. The data shown were measured at
three such positions, at the distances O.6rb, O.8rb, and r,,  from the apex

outward along the bow wave., Table I provides additional informetion (such
as the local pressures and the equilibrium temperatures) pertaining to the
data in figure 16.

The triangular symbols in figure 16 (representing data obtained when
the models were fired into the supersonic air stream) shown at temperatures
of 1785° K, 1860° X, 2740° K, and 2830° K indicate somewhat longer relaxa-
tion times than those predicted, corresponding to larger angles of the bow
shock wave than those calculated from the shock tube relaxation time data.
A similar result is indicated in table I and figure 15(b) at a Mach number
of 6.79 (and a temperature of 830° K) for which the recorded bow shock
wave angles were everywhere greater than the cone angle for frozen flow.
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Apparently, when the models were fired into the supersonic air stream,
the data are influenced by factors other than just the relaxation time.

Data shown in figure 16 and teble I at four temperatures (18600,
2020°, 3550°, and 4030° K) indicate that the value of 7p varied
considerably, depending on the choice of the portion of the bow wave
upon which the calculations were based. This large variation corresponds
to a large amount of curvature of the bow wave, the cause of which could
not be ascertained but which may be partly a result of large yaw angles
(up to about 4.4°) that were recorded when some of these shock waves were
photographed, and partly a result of inaccuracy due to poor definition of
the shock wave in the shadowgraphs. Contributing to the lack of definition
were: occasional underexposed pictures resulting in poor photographic
contrast; occasional fogging of the film plates by the gun muzzle flash;
finite light duration causing a blurred shock wave image; finite size of
the spark source which reduced image sharpneces.

The remainder of the data obtalned with the models launched into
still air and one set of data obtained using the supersonic air stream
(shown in figure 17 at a temperature of 2090% K), indicate reasonably
consistent values of Tp as a function temperature.

Comparison With Results of Other Tests

Figure 16 also shows the vibrational relaxation times for pure oxygen
and pure nitrogen measured in the shock tube tests described in refer-
ence 5. It is seen that for nitrogen Tp 1s greater than for oxygen by
more than an order of magnitude. It would be expected from this that the
relaxation of air would not occur as a single process, but instead might
be two processes: first, the excitation of he oxygen and an approach to
a quasi-equilibrium state in which the nitrozen is almost frozen, and then
as the excitation of the nitrogen progressed, an approach more slowly to
complete equilibrium. If the processes actuilly took place separately in
this way and if the flow distances were of tie proper length, the bow wave
shapes would show separate effects which could be identified with each of
the two processes. Attempts to identify such effects in the shadowgraphs
were not successful, however. The values of Tp shown in figure 16 for
the tests described in this report were caleilated as if the relaxation
were a single process, and, therefore, Tp 13 an effective or apparent
relaxation time parameter which characterizes the combined process in air.
Since a comparison with shock tube results was considered one of the objec-
tives of the experiments, similar "apparent” relaxation times were calcu-
lated from the shock tube data. They are referred to in the following
discussion as the predicted relaxation timee.

The predicted effective relaxation times in alr have been calculated
by two methods; in both the air is considered to be a mixture of oxygen
(21.4 percent) and nitrogen (78.6), and the assumption is made that the

~1
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variation of the state of the gas mixture in the relaxing process is the
sum of the variations of the states of component gases, as if they were

not mixed. In the first method, which does not depend on the gas flow,

the calculated relaxation time is defined as the time required for the
mixture to vary its temperature (and density) from frozen to a specified
fraction of the total change between frozen and equilibrium. In the

second method, the bow shock wave is constructed and an apparent relaxation
time is calculated from this shock wave.

In using the first method, it 1s assumed that the density variations
of the oxygen and the nitrogen can be expressed separately as exponential
functions of time, so that the variable density of the mixture is given
by the following equation.

PM - pf¥> > ~t/TO —t/TN
peM_. pr peM pr = peo - pfo e + DeN - pr e

where the subscript M refers to the gas mixture, O refers to oxygen
and N to nitrogen. When t is equal to the relaxation time T

(pM - pr) is equal to l/e(peM - pr), according to the definition of -

(16)

that has been mentioned previously. Since the mass fractions of the two
component gases are constant, so that

Pe, = 0.21k4 Peyy Py 0.786 Pey,
p. = 0.21h o p. = 0.786 p
%o Ty’ Ty Ty
equation (16) may be written
0.214 (e_TMP/TO§> + 0.786 (é_TMp/TN§> = 0.368 (17)

If values for ToP and typ are taken from the figure 16 (for oXygen
vibration and nitrogen vibration, respectively), noting that ToP is
approximately equal to 0.0k 4P, equation (17) reduces to the relation

nP = 0.759 7P (18)

This is shown as the dashed curve in figure 16. Essentially the same
relation as equation (18) is obtained if the relaxation time of the
oxygen 1s assumed to be zero.
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The predicted relaxation time for air, calculated by the second
methcd is described in detail in appendix D. The shape of a bow shock
wave is calculated and from this wave shape, the relaxation time T and
the parameter Tp 8are determined in the sare way as in the case of the
shock waves obtained experimentally. Results of the calculations are
presented in table I and are shown as the rectangular symbols 1n figure 16.
They may be compared with the experimental results shown in this figure at
the same temperatures. The variation indicated by the elongation of these
rectangular symbols results from calculating the effective Tp for several
points along the wave. As the location of =he point on the shock wave
varies, the relative contribution of the oxgen and the nitrogen relaxation
processes changes 50 &8 to cause a variation in the effective relaxation
time parameter.

The shock-tube tests reported in refersznce 5 provide data for
vibrational relaxation time in oxygen only up to a temperature T of
3OOOO ¥X. The results were extended to the higher temperatures indicated
in figure 16 by plotting the log of 1p as & function of T Y3 (as
suggested in ref. 5) and extrapolating. At these high temperatures, the
predicted values of r1p &are quite insensitive to variations of the

relaxation time of the oxygen.

The apparent values of T obtained i'rom the tests would be
expected to have the same characteristic ag the values predicted by the
method involving the construction of a bow shock wave, that is, a variation
with the location of the points selected on the shock wave. In addition,
these values are also to some extent functions of the pressure and the
magnitude of the characteristic flow dimension (i.e., the model size).

It esppears that for the majority of the po’nts shown, the values of the
relaxation time parameter determined exper mentally agree fairly well with
values calculated by either of the two metiods described, in which the
results of shock-tube tests in pure OXygen and pure nitrogen are combined
to furnish values for relaxation times in air.

In commen with most experimental techaiques that have been employed
to measure relaxation times at high enthalpies, the results obtained in
the tests described in this report do not provide precise numerical values
for Tp. However, in view of the very large differences in the values of
this parameter that have resulted from use of various theories for calcu-
lating relaxation times for some of the processes involving adjustment
rates of the various internal degrees of ireedom of a gas, in particular,
for dissociation and the other chemical reactions, an experimental method
which yields values of Tp even within ar. order of magnitude can be of
considerable value. The results shown in figure 16 indicate a mean varia-
tion of Tp with temperature from which numerical values ocan be specified
well within an order of magnitude.

The tests reported in reference 5 inlicated that the vibrational
relaxation time of oxygen in a nitrogen mixture was increased because the
oxygen-nitrogen collisions are only about Lo percent as effective in
transferring energy &as are the oxygen—oxygen collisions. If this factor
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is included in calculating the effective relaxation times of air, the
values of T for oxygen in air would be about twice those shown in

figure 16 for pure oxygen. All of the effective values of T calculated
from the shock-tube results would be increased slightly, but the general
comparison of such values with the values obtained from the tests repcorted
herein would not be significantly different from that shown in figure 16,
because oxygen is a minor constituent (21 percent) of air.

Results of the tests 1n still air which covered a range of tempera-
tures (T) from 1990° to 4260° K and velocities from 7,260 to 12,000 feet
per second, indicated values of tp from 60.7 to O. ”8 microsecond-
atmospheres, corresponding to a range of relaxation times from 4.34 to
0.16 microseconds. At the highest velocities, about 30 percent cof the
change in bow wave angle between frozen flow and equilibrium is caused by
oxygen dissociation, and the relaxation time for the dissociation would
have some influence on the effective relaxation time for air calculated
from the experimental data. The results thus far obtained, however, are
not sufficiently precise to be used to calculate a relaxation time for
oxygen dissociation.

Effect of Water Vapor

The effective relaxation time for air is undoubtedly influenced by
the presence of gases other than oxygen and nitrogen. Reference 4 indi-
cates that water vapor in ambient air can have an important effect on the
relaxation time for oxygen vibrations, because of the much greater effec-
tiveness of oxygen-water molecular ccllisions compared with oxygen-oxygen
and oxygen-nitrogen collisions. The absolute humidity of the air in which
models were flown was always about equal to that of ambient air, when the
tests were conducted in still air. 1In these tests it was not feasible to
use dry air because there was always some leakage of ambient air into the
test section whenever the test section was partially evacuated. It is
indicated in reference 5 that an amount of water vapor up to 3 parts in a
thousand did not have a measurable effect on the relaxation time in oxygen.
In the present tests the amount of water vapor was as much as four times
that in the tests reported in reference 5 and may have had scme effect.
The data have been examined for any consistent relation between the
absolute humidity of the ambient air and differences between the predicted
and experimentally determined relaxation times. No consistent correlation
was evident.

CONCLUSIONS

Conical models of low-fineness-ratio have been tested in free flight
at velocities from 4,600 feet per second to 12,000 feet per second, in
which the calculated equlllbrlum temperatures behlnd the shock wave ranged
from 1510° R (840° K) to 6200° R (34L40° K) and temperatures in frozen flow
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ranged from 1580° R (880° K) to 9140 R (5070° K). Analysis of the
results of these tests has led to the following conclusions:

1. The shape of the bow shock wave can bz used to calculate a
relaxation time in a nonequilibrium flow in the heated region behind the
shock wave.

2. Comparison of the relaxation times ir air calculated from the
present tests with effective relaxation times estimated from results of
shock-tube tests with pure oxygen and pure nitrogen indicated that in the
temperature range where vibrational relaxatior would be expected, these
two experimental techniques yield results that agree within the experi-
mental scatter.

Ames Research Center
National Aercnautics and Space Administration
Moffett Field, Calif., May 9, 1960

AN
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APPENDIX A

DEVELOPMENT OF APPROXIMATE THEORY FOR CALCULATING

EQUILIBRIUM FLOW ON BLUNT CONES

The basic equations of axisymmetric cone flow from reference 11 may
be written, with the notation indicsted in figure 2(a),

du
RS2 = A
- V=0 (A1)
v L dp _
Tt ou o+ S @6 - 0 (A2)
4 (pv sin 6) + 2ou sin 6 = 0O (A3)

as

Since flow along streamlines is isentropic behind the shock wave, the
sonic velocity given by the relation a2 = (Bp/Bp)S, may be expressed in
the relation

dp _ =2 dp
=5 (Ak)

The following expression is obtained by combining the above relations.

2
2 2
1 du d™u _ du du
"a3<65><?1?9'2‘+u>'?€§§+?1500t9+2u (#3)

At the solid cone surface, designated by the subscript 5, vg = 0, and
so from equation (Al), (du/de)s = 0. Egquation (A5) at the solid cone

surface then becomes

ﬁ> = =2u (Aé)
<d92 s S

Expanding v in a series referred to its value on the cone surface, and
dropping the higher order terms (assuming d®u/d6® constant)

v—(ﬁ (6 - 65) (A7)
- \a6?/q ©
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From equations (A6) and (AT)

v = -2ug(6 - 6g) (48)

Comparison of values obtained from this approximate relation with
values given by reference 1l indicates good agreement for the blunt cones
considered here. It was noted that even better agreement results if the
local radial velocity u is used in equation (A8) instead of the velocity
ug on the surface; that is, defining A6 = 6y - Og

vy = —2u A8 (A9)

If the velocity ahead of the shock wave, 'J;, 18 resolved into its
normal component Un, and tangential componen: Ug,, and the velocity

-1 Mo

pehind the shock wave into components un2 and utz, equation (A9),

together with oblique wave relations, provides the following:

Since utl = utz and vy = —unz = —EUWAQ

up, = 2up AP (A10)
wn u
VT ug ug
1 2

If « is the angle of the streamline deilection through the shock
wave,

Un,
tan (6y - @) = ﬁ%g (A12)
2
2ut 9
= —5— = 2(8, - 65) (413)

[
PR

from equations (A10) and (A12). Also, from ejuations (A11) and (Al2)
Then, from equations (Al3) and (ALlk)

N2 pen g = 2(6 = 6g) |
. an oy = W s (A15)
1
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Inserting the relation from continuity requirements
tn, Py
unl - o,
equation (Al5) becomes
P, -
== ) tan 6y = 2(6y - 65) (A16)

Equation (AL6) relates two of the variables we are most interested in,
the wave angle 6+ and the density ratio pl/pz' Since both are unknow

we require another relation between them and for this purpose write the
momentum and energy equations for flow through the oblique conical shock
wave using the normal component of the Mach number My, and assuming the

gas in the free stream is ideal,

p
= =1+ (i - §%> My~ (A17)
1 2
2
hy Py y - 1 2
= S (R 8
Roo Ll [1 <é2> J 5 n (A18)

The eguation of state may be written
p to
== == (a19)

1

—_— = = 7

p, p, "2

where 1 = TZ/Tl and Z, 1is the compressibility, pz/pORTg. Egquaticns
(AL7), (A18), and (Al9) may be combined to give the relation

=) .

where 3 = (hy/h,)(T,/T.). If an effective ratio of specific heats, 7,
is defined by the relation

v, + 1 "

'E 7 o+ 1 t 2y o,
VE_l:V—l+t~l[(B_l)7_1_(Zg“l)<l+'b-" (Agl)
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equation (A20) becomes
2
o o. e + 1
Pay 1|2 (¢t -1)|-t=0 (a22)
pg p2 7E—l

It may be noted that in the special case of a perfect gas (B =1, 2y = 1),
the definition of 7y, equation (a21), reduces to yp = 7. Neither B

nor 2 appears in equation (A22), which is the same as the expression
for the density ratio in a perfect gas having 7 = Yg? and the same value

of t.

An expression for the pressure is found by writing the momentum
equation for the normal component across the shock wave

1
From continuity,
PiUn. = PoUn,

so that

Py~ P2 1.8

PiUn,2 2
Since, by definition,

Po~ Py

Cp = e
p

(1/2)p,U4°
and

U.nl = Ul sin 9W
The pressure coefficient may be expressed as follows:
. 2
Cp = 2 sin“Oy {l - (plfpg)} (A23)
In the hypothetical flow, the enthalpy ratio is equal to the

temperature ratio. Putting t = h,/h, and My = My sin 6, into

equation (A18),

0N
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M, Z

.2 t - 1
in 6 =
g SR YW

[1 - (91/02)2] (1/2)(rg - 1)

Writing equation (A18) for the general gas with hy/h, = Bt,

2 .2 pt - 1
Ml sin 6y =

[l B (01/02)2](1/2)(7 - 1)
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(A2k)

(A25)

The Mach numbers of the two flows are related by the following equation,

obtained by combining equations (A24) and (A25).

/2

3 (Bt - 1) (yg - l)]
Mo = My [ (t-1) (-1

(A26)



APPENDIX B
EXAMPLY CATCULATION

This appendix presents an example of the ralculation of the bow
shock wave angle 6, and the pressure ratioc across the shock for a
52.50 cone. The temperature and pressure behind the shock wave are
assumed to be, respectively, 3800° K (6840° R) and 10 atmospheres, and a
frec—stream temperature of 300° K (5409 R) is selected. The enthalpies
and compressibility factor for air obtained from references 1 and 3 were
as Tollows for the assumed conditions.

h, = 3.83 RT,
h, = 74%.1 RT,
z, = 1.066

From equation (A20), o,/p, = 0.1179. From equation (A21), assuming
y = 1.405, the value 7p = 1.2k4 is obtained. For this value of
yg and 0.3t = 0.3(T,/T,) = 0.3(3800/300) = 3.8, figure 3 gives the

the effective Mach number
ME = 11.62

With this Mg, equetion (A2G) gives the strean Mach number
M, = 11.29

From figure ! and the above values of 7 and ME’

N = 5.50
The bow shock wave angle is
Oy = 6g + A0
= 52.5 + 5.50
= 58.00

Obtaining the pressure coefficlent from figur= 7,

Cp = 1-266

N
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This together with the assumed pressure behind the shock wave permits

the calculation of a pressure

Pa

Py

ratio and a stream static pressure

CoM.2
-1 4 7

(1.266)(11.29)7(1.%05)
5

=1 +

113.4

1]

p./(p,/p,) = 10/113.k

Il

0.0882 atmosphere
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APPENDIX C
EFFECT OF THE BOUNDARY LAYER ON THE SHOCK-WAVE SHAPE

The magnitude of the change in the shock-wave shape due to the
boundary layer would depend on the condition of the boundary layer. In
some of the tests, it was possible to determine whether the boundary
layer was laminar or turbulent by inspection >f the shadowgraphs. Such
tests indicated that in most cases the boundary layer was entirely laminar;
however, turbulent boundary layers were observed in a few cases, and the
possibility existed that the boundary layers were turbulent in some of the
tests for which it was not possible to determine their condition from the
shadowgraphs. In order to establish the limits of the possible effects,
the maximum effects of laminar and turbulent boundary layers on the shock
wave shapes were calculated.

From heat—transfer calculations (and also from experimental results)
it can be shown that the model surface temperatures in tests such as those
discussed in this report are always considersbly lower than the adiabatic
wall temperature, because of the short duration of the tests and the high
conductivity of the model. In calculating the thickness of the laminar
boundary layer, the effect of heat transfer to the model surface has been
taken into account by use of the results presented in reference 19. In
this reference, theoretical results are given for an assumed ratio of wall
temperature to temperature outside the boundury layer of 0.25. In most of
the tests, the temperature ratio was estimatcd to be even smaller than
this, but this ratic 1s typical of the test conditions for which the
boundary-layer thickness was maximum. In adliition to assuming that the
temperature ratio of 0.25 would be applicabl:, a combination of conditions
was selected in which other factors would calse the boundary-layer thick-
ness to be large, and the boundary-layer thickness was calculated for this
one case to determine the maximum effect of -he laminar boundary layer.
For this combination of conditions, the Reyn>lds number behind the bow
shock wave was 0.9 million per inch, or a Reynolds number of one million,
pased on the slant length of the cone. (The Reynolds number based on the
stream conditions was 1.7 million per inch.)

The thickness of the boundary layer on a cone was related to that on
a flat plate by the relation

5 cone = (93/2<> 6*p]ate

which results from the rule (given, e.g., ir ref. 20) that the skin

friction on a cone 1is N3 times the value for a flat plate. The
boundary-layer displacement thickness at the most rearward location on

3
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the conical surface was calculated to be 0.00053 inch, corresponding to

an effective angular change in the model cone half angle of O.025O. This
change in the effective model cross section would produce a negligible
change in the shape of the bow shock wave. Although the way in which the
effect of heat transfer is taken into account is not exact insofar as the
surface temperature of the model is not known, if the effect were entirely
disregarded, the calculated thickness of the laminar boundary layer would
be no more than twice the value obtalned when wall cooling was assumed

and might still be neglected within the accuracy of the measurements.

To estimate the maximum effect of a turbulent boundary layer, as in
the case of the laminar boundary layer, calculations were made for one
combination of conditions in which the displacement thickness might be
expected to be a maximum. The same Reynolds number was selected as in
the case of the laminar boundary layer. The thickness of a turbulent
boundary layer on a cone was calculated by an unpublished method in which
the effect of heat transfer can be taken into account if the effect of
heat transfer on the skin-friction coefficient is known. The skin friction
for flow with heat transfer was computed by the method described in refer-
ence 21. For the conditions considered, the maximum calculated displace-
ment thickness was 0.001l6 inch. The effective increase in the cross
sectlon of the model cone corresponds to an increase in the solid cone
angle (in the region where shadowgraph data were measured) of about 0.12°.
The influence of this incrementsl cone angle on the bow shock wave angle
is indicated in figure 17, which shows the bow wave angle as a function
of' cone angle for frozen flow at Mach numbers of 6, 10, and infinity, and
for equilibrium flow at Mach numbers of 6 and 10. The maximum slope of
these curves, for the range of conditions of the tests, was 2.2. This
indicates that the angular coordinate of the bow wave could increase by
0.260, 1f the model has a turbulent boundary layer originating at the apex
of the cone. This increase would have some effect, such as to increase
the calculated value of the relaxation time, that would increase with a
decreasing difference between MOy Tfor frozen flow and NS, Tfor

equilibrium flow. The largest effect then occcurs at the lower model
velocities, and for the smaller solid cone angles.

Because this value of the angular increment, 0.260, results from a
combination of assumed conditions such as to produce the maximum effect,
and because it is believed that in most of the tests the boundary layer
was partly or entirely laminar so that the effect would be much smaller,
no correction was made for the effect of the boundary layer on the shape
of the bow shock wave.



APPENDIX D

PREDICTED EFFECTIVE VIBRATIONAL RELAXATION TIMES

BASED ON A CALCULATED SHOCK-WAVE SHAPE

The second of the two methods employed in this report to calculate
the predicted relaxation times for air is presented in this appendix.
First, relations are obtained from which the bow wave shape can be
culeulated, and then the relaxation times are calculated from this wave
shape. Calculations are made for conditions selected so that the results
can be compared directly with each set of experimental results.

The following equation is assumed to specify the time variation of
temperature of the air as it approaches equilibrium after having been
heated as an inert gas by the shock wave.

—t/TO

—t/TN
T - Tg = (Tp - Tgle + (Tg - Tele (p1)
where the subscript g refers to the state cf the gas corresponding to
oxygen in equilibrium while the nitrogen remecins frozen. Introducing the

density and pressure from the equation of stete into equation (D1)

—t/r _ ~t/T
3_232.81__1’&>e 0+<_:g___1.>ge W (22)
PR peR prR PR R PR

At any given free-stream Mach number, it can be shown that the pressure
ahead of a blunt body is not a sensitive function of the gas state, in
which case it can be assumed that p, pg, anc py 4are equal. Also, with
nc dissociation, the gas constants are equal. Equation (D2) can then be
written

AN D A AT el (23)
P pe pf pg pg pe

It is now desirable to relate the bow siock wave geometry to the
density. The shock wave angle is given as a function of density in
equilibrium flow by equation (Al6), which can be written

1 _ 2 M
P, T, tan oy (D4)

-1
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Putting equation (D4) into equation (D3) and observing that Py, the free
stream density, is the same in each term,

A8 NS <A9f Mo g > —ta/T, <A9g NS ) ~ta/Ty
— = - e + . e
tan 6y  tan 64 tan 6p  tan O tan 6y tan 6,

(D5)

For this expression to have a meaning, it is necessary to assume that an
average effective density can be defined which is related by equation (DL)
to the angular coordinates of points on the shock wave in nonequilibrium
flow. This density is, in general, a function of the radial coordinate.,
In equation (D5) the time ta 1s the time required for a small volume of
gas to attain the average effective density as it moves downstream from
the shock wave.

To determine whether it is possible to assume that an effective
average density and a corresponding flow time +t5 can actually be
defined, eguation (D4) was applied to a nonequilibrium flow, assuming
that the gas undergoes only a single relaxation toward equilibrium. The
result was compared with the result obtained using the derived relations
for noneguilibrium flow and figure 9. The purpose of this comparison
was to see if any value of ta would bring the results into agreement.
It was found that relatively good agreement is obtained (at least for the
case of model cone angles of 52.5° and 55°) if tg is taken as 0.2(rp/uy) -

Equation (D5) was then used with this value of ta to calculate
A8 /tan 8w for three radial locations on the shock wave, O.6rb, O.Brb,

and ry. For each of these values of NG [tan Oy, the angular coordinate
8y was calculated and y/yb was computed:

y _ 0w~ 06e p

b ef - Qe 5

The relaxation time ratio rb/Tuo was determined from figure 9 and
converted into the parameter Tp using the same values of Tpy U and p

as those used in reducing the corresponding experimental results.

(o4
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Frozen flow

Curved bow wave

Equilibriurm

(b) Nonequilibrium flcw.

Figure 2.- Sketch showing model geometry end flow field notation.
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Figure 3.- Graph showing relation between temperature ratio t, effective 7
and effective Mach number; GS = 52.50.
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(b) Supersonic air stream; M = 10.99.

Figure 13.- Typical shadowgraphs of cone-cylinder models in free flight.
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(a) Rectangular coordinates of shock wave.
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C»  Upper branch
C: Lower branch
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o [

| Frozen flow
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(b) Polar coordinates of shock wave.

Figure 1lhk.- Example of bow shock gave plogted from shadowgraph data;
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